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ORIGINAL ARTICLE

Connectome analysis for pre-operative brain mapping in neurosurgery*

Michael G. Harta,b, Stephen J. Priceb and John Sucklingc

aBrain Mapping Unit, Department of Psychiatry, University of Cambridge, Sir William Hardy Building, Cambridge, UK; bDivision of Neurosurgery,
Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, UK; cBrain Mapping Unit, Department of Psychiatry, University
of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge, UK

ABSTRACT
Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is
the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome
allows understanding of the importance of regions to network function, and the consequences of their
impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to
characterise overall network topology and individual patterns of connectivity alterations.
Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-
operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex net-
works analysis was initiated by parcellating the brain into anatomically regions amongst which connections
were identified by retaining the most significant correlations between the respective wavelet decomposed
time-series.
Results: Key characteristics of complex networks described in healthy controls were preserved in these
patients, including ubiquitous small world organization. An exponentially truncated power law fit to the
degree distribution predicted findings of general network robustness to injury but with a core of hubs
exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range
connectivity with distinct patterns of connection loss depending on lesion location.
Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients
with brain tumours. Applications to pre-surgical planning include identifying regions critical to network
function that should be preserved and visualising connections at risk from tumour resection. In the future
one could use such data to model functional plasticity and recovery of cognitive deficits.
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Introduction

Neurosurgery requires an understanding of functional anatomy in
order to make surgery safe and effective. Hence unsurprisingly
neurosurgery has made significant contributions to brain mapping
using multiple modalities over many years.1,2 One of the goals of
this endeavour is to accurately predict the functional consequences
of lesions (either endogenous or surgically induced) both immedi-
ately following surgery and in the long-term (that is, accounting
for plasticity induced recovery). This ‘virtual brain’ will require
incorporation of localization and network-based approaches to
neuroanatomy, and, in doing so, will model brain function in a
holistic manner. In other words, brain function is considered as a
whole and not limited to one region or network. However, this
goal has hitherto proven elusive. Solving the joint problems of
modelling brain function predictively would allow one to better
plan surgery with regards to timing, extent of resection, and
expected recovery.

The development of the connectome, or ‘wiring diagram’ of
the brain, offers the potential to answer these questions.3–7 Here
the brain is viewed as a collection of nodes that are connected via
edges.8 Connectome analysis has revealed the brain – where nodes
are circumscribed brain regions and edges the degree of

synchronization of endogenous signals (also known as functional
connectivity) – to be organized as a ‘small world’ whereby it parsi-
moniously balances local specialization with distributed connectiv-
ity and short-cuts between regions.9–11 In this manner, the brain
network shares its small world properties (and others) with a wide
variety of other complex networks including social networks,
transportation routes, and the world wide web.12 The importance
of the connectome paradigm in neuroscience research is epito-
mized by the $40 million Human Connectome Project, which the
National Institutes of Health (NIH) has identified as one of the
three ‘grand challenges’ for neuroscience research.13

Connectome analysis is attractive to neurosurgeons not only
for the principle of mapping brain connectivity but also for allow-
ing intuitive modelling of lesions and plasticity. For example, one
can remove parts of a network (for example, friends or friendships
in a social network) and identify changes in network properties
(such as social cohesiveness or rumour propagation) to gain an
understanding of the effects at both a local and global level. One
can then investigate mechanisms of putative plasticity using mod-
els such as connection re-wiring, alternative routes for information
flow, or re-activation of redundant pathways.14,15

To begin to understand the applicability of connectome ana-
lysis to neurosurgery, and its potential to answer useful clinical
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questions concerning functional brain mapping, MRI data depict-
ing blood oxygenation level dependent (BOLD) contrast were
acquired pre-operatively from patients with a brain tumour. Using
this dataset connectome analysis was undertaken with the follow-
ing objectives:
1. Derive the connectomes of individual patients with brain

tumours.
2. Measure the key features of the connectome and how

they compare with those previously described in healthy
volunteers.

3. Visualize the connectome in an intuitive and surgically rele-
vant manner.

4. Appraise the applicability of connectome analysis to pre-
surgical planning.

Materials and methods

Participants

The study was approved by the Local Regional Ethics Committee
(protocol number NIHR/CS/009/011) and all participants pro-
vided written informed consent. Basic demographic information is
summarized in Table 1. All participants had a confirmed glioblast-
oma at local histological review according to WHO criteria,16 and
all but one had a complete resection of the contrast-enhancing
component as confirmed on a post-operative contrast-enhanced
MRI within 72 h of surgery.17

Imaging parameters

MRI data were acquired using a Siemens Trio 3T scanner and 16-
channel receive-only head coil (Siemens Medical Solutions,
Malvern, PA). A multi-echo echo planar imaging sequence con-
tinuously acquired BOLD-sensitive data over a period of 10 min
and 51 s with a repetition time (TR) of 2.42 s for each three-
dimensional volume, resulting in 269 three-dimensional volumes
covering the cerebral cortices and cerebellum. Acquisition parame-
ters for resting-state fMRI were the following: flip angle 90�;
matrix size 64� 64; in-plane resolution 3.75 mm; echo times (TE)
of 13.00 ms, 30.55 ms, and 48.10 ms; slice thickness 3.8 mm.
Anatomical images were acquired using a T1-weighted magnetiza-
tion prepared rapid gradient echo (MPRAGE) sequence (FOV
256 mm� 240 mm� 176 mm; matrix 256� 240� 176; voxel size
1 mm isotropic; TR 2300 ms; TE 2.98 ms; flip angle 9�).

MRI pre-processing

Connectome analysis of resting-state fMRI offers theoretical
advantages over task-based fMRI in accounting for BOLD signal
artefacts related to brain tumours. Whereas task-based fMRI is
known to be vulnerable to tumour-related susceptibility artefacts,
resting-state fMRI data allows removal of noise-related signal in a
data-driven and physically principled manner using ME-ICA.
Another advantage of resting-state fMRI is that it relies on

correlations between time series in the absence of stimulation,
whereas task-based fMRI can be susceptible to alterations in neu-
rovascular coupling during task performance.

Data pre-processing was performed using AFNI18 (http://afni.
nimh.nih.gov/afni/) with custom multi-echo-independent compo-
nent analysis (ME-ICA) scripts19,20 to identify and remove non-
physiological noise from the BOLD signal. The first 15 s of time
points were discarded to allow for magnetization to reach steady
state. Subsequent steps included the following: slice time correc-
tion, rigid-body motion correction, de-spiking, and de-obliquing.
No spatial smoothing or bandpass filtering was performed at
this stage.

MPRAGE structural scans were pre-processed with intensity
normalization and brain extraction. Standard algorithms for brain
extraction resulted in either significant residual non-brain tissue
or removal of intra-axial tissue. Therefore, we used the brain atlas
of the Montreal Neurological Institute (MNI) defined in a stereo-
tactic coordinate system transformed back into the acquisition
spaces of each individual scan to mask the parenchyma of the
brain, in a manner similar to that previously reported, but with
linear instead of non-linear registration, and the addition of masks
of the contrast-enhancing tumour volume that was excluded from
the registration cost function.21 This allowed robust and auto-
mated brain extraction. All images were registered to the Montreal
Neurological Institute brain atlas at 2 mm resolution using the
FSL package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) FLIRT.22,23

Parcellation

To form a connectome (Figure 1), pre-processed resting-state fMRI
data were parcellated into an anatomical template of 116 regions24

(45 regions for each cerebral hemisphere and 26 for the cerebel-
lum). BOLD time series were averaged over the extent of the parcel,
and constituted a node in the subsequent network representation.

Wavelet filtering

A wavelet-based decomposition of the time series was performed
to account for frequency-dependent heterogeneity in brain con-
nectivity.10,25,26 Wavelet correlation matrices were formed by
applying the maximal overlap discrete wavelet transform
(MODWT) to the time series from each parcel. This resulted in a
set of five wavelet scales (i.e. frequency bands, scale
1¼ 0.2–0.1 Hz, scale 2¼ 0.1–0.05 Hz, scale 3¼ 0.05–0.03 Hz, scale
4¼ 0.03–0.01 Hz, and scale 5¼ 0.01–0.006 Hz), at each of which,
Pearson’s correlation, rij, was calculated between all possible con-
nections between parcels i and j. Wavelet scales 4 and 5 were not
able to produce a matrix of the required mean degree at any
threshold and were, therefore, not studied further.

Thresholding

At each wavelet scale, the network was thresholded; that is, con-
nections were kept if the probability, p, of rij was greater than the

Table 1. Demographic information.

Patient Age Pre-operative examination Pathology Operation Tumour location Tumour volume (mm3)

1 64 Left pronator drift Glioblastoma Complete resection Right superior parietal lobule 35,736
2 73 Intact Glioblastoma Complete resection Right inferior parietal lobule to occipital pole 86,296
3 79 Hemianopia Glioblastoma Complete resection Right inferior occipital lobe 46,232
4 76 Left hemiparesis Glioblastoma Biopsy Right superior para-central lobule 59,304
5 36 Left hemiparesis Glioblastoma Complete resection Right post-central gyrus and supramarginal gyrus 51,544

2 M. G. HART ET AL.
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threshold R, p(rij>R).10 As a result, a graphical representation
was formed where connections between parcels were either pre-
sent or absent; in other words, a binary network representation of
the connectome. To allow for estimation of small world proper-
ties, the mean degree (i.e. mean number of connections associated
with a parcel) was chosen to be equal to the log number of
parcels: knet¼ 2*log(n), following which we defined R as the
value that resulted in a fixed number of edges¼ n*knet, while
controlling for multiple statistical testing by adjusting the prob-
abilistic threshold with the false discovery rate (FDR):
p(rij>R)< aFDR¼ 0.05. This method of thresholding naturally
leads to sparse networks that include only a proportion of all
potential connections.27

Graph theory analysis

Network analysis was performed in Matlab [MATLAB 2015a, The
MathWorks, Inc., Natick, MA] with the Brain Connectivity
Toolbox [http://www.brain-connectivity-toolbox.net] and the R
statistical package28 with the Brainwaver library (version 1.6).29

Specific graph theory measures and their definitions are given in
Table 2.

Connectome analysis allows the application of measures from
graph theory. These include the node degree, defined as the num-
ber of connections of each node (i.e. parcel). The clustering co-
efficient, a measure of network segregation or local specialization,
is defined as the ratio of neighbours of a node that are also neigh-
bours of each other (and, therefore, form a triangle or local cli-
que) over all possible neighbour connections. Path length, which
measures network integration or information flow, is the number
of steps (or edges) required to move from one node to another.
Both the clustering co-efficient and the path length can be com-
pared with the same measures from a randomized network (see
below for creation of randomized networks) where they are given
the names c and k, respectively. A small world network displays
higher clustering but similar path length than a randomized
network, and the small world parameter, d¼ c/k, will be greater
than one.

How a network changes after removal of individual node(s) or
edges(s) is known as network robustness or resilience. A more
robust network is one where removal of a node or edge does not
lead to a significant change in graph theory measures (typically
the size of the ‘giant’ component, path length, or global effi-
ciency).10,30,31 Robustness can be assessed by either removing
nodes in a random manner, or by targeting nodes based on some

Figure 1. Connectome construction. Methods for performing a connectome analysis using resting-state fMRI data as an example, but similar methods can be applied to
data acquired from DTI or EEG/MEG. Initially, a template is chosen to divide the brain into different regions (known as parcels) that form the network nodes. These nodes
are used to form the rows and columns of a matrix. Entries of the matrix represent edges between each of the nodes and are formed by recording a measure of statis-
tical dependency (such the Pearson correlation co-efficient) between the resting-state fMRI time series of each node. This correlation matrix can then be thresholded and
binarised to form an adjacency matrix, although weighted and fully connected matrices (without thresholding) are also possible. Finally, the co-ordinates of each parcel
are used to display the node location onto a surface reconstruction of the brain, with edges representing functional connections.
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characteristic such as clustering or path length, known respectively
as random error and targeted attack.32 Information centrality per
node is similar to robustness but defined as the change in global
efficiency after removal of a single node.33

Network comparisons

Group analysis was performed to allow robust estimation of overall
network measures. This was possible given the overlap in lesion
locations and, therefore, in the parcels that were adjacent to the
tumour. Group networks were formed by averaging rij for each
edge at each wavelet scale separately. Network comparisons were
based on simulated randomized networks, generated, and config-
ured to match the number of nodes, mean degree, and degree dis-
tribution of the brain networks, and simulated scale-free networks
of the same number of nodes and edges but with a power law
degree distribution. Comparisons between each of these network
models were performed with Akaite Information Criteria (AIC).34

Visualization

Brain networks were displayed with the BrainNet viewer35 [http://
www.nitric.org/projects/bnv/] and Circos36–38 on an individual
participant basis to highlight the potential application of the ana-
lysis to pre-operative brain mapping.

Results

Key characteristics of functional brain networks

Small world features were identified over a range of wavelet scales
for group average networks (Table 3). Compared with simulated
random graphs, brain networks had comparable path lengths but
markedly increased clustering, accounting for the associated small
world features. Wavelet scale 2 (frequency band 0.5–0.10 Hz) was
chosen for further analysis having the highest small world score
(d¼ 1.65, Figure 2).

Anatomical brain networks

The anatomical network for a single participant at wavelet scale 2
is displayed in Figure 3. Thresholding resulted in a sparse group

average functional network of 551 edges, or around 8% of all pos-
sible edges. While this brain network tended to form a giant com-
ponent, it did not include all nodes due to the removal of low
weight edges during thresholding and the inclusion of small par-
cels with limited signal-to-noise in their associated time series.
Structures outside the giant component included subcortical

Table 2. Definitions of network measures.

Measure Definition

Centrality How important a given node’s features are to the overall network
Degree The number of connections of a node
Efficiency The inverse of path length (which accounts for disconnected nodes and weights more towards short edges). Can be local (based on a nodes

community) or global
Clustering co-efficient, c The clustering co-efficient measure of local cliques or nodes whose neighbours are also neighbours of each other and is a measure of net-

work segregation. This can be expressed as a ratio of that from a corresponding random network (‘normalized clustering co-efficient’)
Giant component Largest connected cluster of nodes in a network
Hub Nodes that form a key component of the overall network structure e.g. they have high degree, high centrality, or short path length to other

nodes
Information centrality Percentage change in global efficiency due to removal of a single node
Path length, k Path length is the number of discrete steps between nodes that are required to complete a journey from one node to another and is a

measure of network integration. This can be expressed as a ratio of that from a corresponding random network (‘normalized path
length’)

Random error Removing nodes at random and measuring the change in network properties (e.g. size of the giant component or efficiency)
Resilience The ability of a network to recovery from removal of specific components (nodes or edges). A network that is highly resilient will demon-

strate little change in its graph theory measures after removing node(s) or edges(s). This definition is similar to robustness but implies a
dynamic reparative process such as plasticity

Robustness The ability of a network to maintain its typical graph theory characteristics after removal of specific node(s) or edge(s) i.e. a network that is
robust will tend not to change much after removal of specific components

Small world, d A measure of simultaneous clustering (network segregation) and short path length (network integration) formed by network short-cuts.
Typically defined as c/k >1

Targeted attack Removing nodes based on a ranking of network features (e.g. degree, centrality, or clustering)

Table 3. Small world features for group networks per wavelet scale.

Scale Hz r R Lnet Cnet k c d

1 0.10–0.20 0.28 0.23 3.53 0.54 1.50 1.83 1.22
2 0.05–0.10 0.35 0.21 2.72 0.56 1.17 1.94 1.65
3 0.03–0.05 0.41 0.13 2.99 0.61 1.29 1.96 1.51

Increasing wavelet scale represents decreasing frequency. Wavelet scales 4 and 5
are not shown as they did not produce the required mean degree for a small
world network (see Figure 3). r is the mean correlation of the scale; R is the cor-
relation threshold to form the adjacency matrix; Lnet is the mean path length; Cnet

is the mean clustering co-efficient; k is the ratio of path length to that of a
corresponding random network; c is the ratio of clustering co-efficient to that of
a corresponding random network; d, small world measure (d¼ c/k).

Figure 2. Effects of thresholding on network degree. Increasing the cut-off of the
correlation threshold results in a reduction in the number of edges that survive
thresholding in the resulting matrix. The straight black line represents the min-
imum mean degree for small world networks (n*log(n)¼ 9.5). The point of inter-
section of the wavelet scale degree with this line is used as the threshold to form
the binary network used for further analysis. Wavelet scales 4 and 5 were not able
to produce a matrix of the required mean degree at any threshold and were,
therefore, not studied further.

4 M. G. HART ET AL.
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structures such as the caudate nucleus and putamen which instead
tended to form isolated connections to their contralateral homo-
log. We identified regions of high local connectivity (clustering) in
the supplementary motor area and middle cingulate while regions
with short path lengths to other regions were found in precuneus
and superior frontal gyrus for example (Table 4). Simultaneous
local clustering and efficient long distance connectivity (or short
cuts between clusters) are the core characteristics of small world
organization. Therefore, the connectome effectively carries the
brain mapping concepts of functional localization and network
connectivity.

Defining network ‘hubs’

The susceptibility of the brain network to injury is analytically
dependent on the degree distribution. The degree distribution of
our empirical group averaged functional brain network demon-
strated a heavy tailed distribution that best fit an exponentially
truncated power law (Figure 4). This degree distribution defines
the existence of hubs as those nodes with disproportionately high
connectivity, but form a minority of all nodes in the network
(Table 4).

Mapping robustness to injury

The existence of hubs suggests random removal of nodes will
have minimal effect on the overall topology as most nodes are of

low connectivity, whereas focused removal of hubs will more
likely have a significant effect on topology. Random node removal
found our group averaged functional brain network to be as
robust as both simulated randomized and scale-free networks
(Figure 5). In this manner, the brain is remarkably tolerant to
small areas of injury that occur at random. In comparison, tar-
geted attack breaks down the brain network earlier, with the brain
network demonstrating intermediate vulnerability between the
scale-free and random networks, which is consistent with specific
nodes being highly vulnerable to injury and acting as ‘weak links’
in the network. Information centrality can subsequently be gener-
alized to determine the effects on the network of removing each
node on overall network efficiency (Table 4). Information central-
ity identifies a core of highly vulnerable nodes which partially, but
not fully, overlap those based on other measures of centrality or
are otherwise defined as network hubs, but with more clinically
intuitive inference (Figure 6). If one were to use this information
for pre-surgical planning, one could purposefully sacrifice selected
nodes whose loss would be predicted to have less effect overall
network efficiency (and, therefore, by extrapolation on higher cog-
nitive features such as intelligence). Furthermore, nodes that have
a disproportionately large role in overall network efficiency could
be avoided.

Network effects of tumours

One can use a network approach to visualise the connectivity that
is either lost, or is at risk of being lost due to real (rather than

Figure 3. The connectome in glioblastoma. A sagittal view of an individual patient’s connectome at wavelet scale 2. Nodes are coloured according to their anatomical
module (e.g. frontal, central, parietal, etc.) and their size is proportional to their degree. Connections (or edges) are presented in grey and represent the binary entries of
the adjacency matrix. Locations are based on the co-ordinates of their original parcels and projected onto a surface reconstruction in MNI space.
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simulated) lesions (Figure 7). Compared with the contra-lateral
hemisphere, brain tumours produced clear and consistent effects
at an individual subject level including reduced connectivity at
intra-lobar, intra-hemispheric, and inter-hemispheric scales.
Another perspective to view these data is as the ‘connections at
risk’ by removing a specific region adjacent to the tumour, for
example, if one wished to include a resection margin around the
lesion (Figure 7, red edges). In each participant, the effects of an
extended tumour resection were not only local but also included
long-range connections both within and between hemispheres.
Therefore, to fully understand the effects of surgery on brain func-
tion, one must use an approach that considers the connectivity of
the brain in its entirety.

Discussion

We present the first comprehensive analysis of the functional con-
nectome in patients with brain tumours. Key achievements were
validating the methodology behind connectome construction and
identifying the core network features that have previously been

Table 4. Complete network measures.

Side
Parcel

abbreviation Degree Clustering Path length
Information

centrality

l MCIN 31 0.51 2.15 �3.43
l PQ 31 0.35 1.94 �3.59
r F1 30 0.41 1.99 �3.26
r MCIN 28 0.53 2.23 �3.09
r F2 28 0.51 2.18 �3.10
l SMA 27 0.62 2.25 �3.01
l T1 26 0.55 2.45 �2.84
r T1 26 0.58 2.45 �2.81
r PQ 25 0.38 2.11 �3.34
l SMG 24 0.66 2.32 �2.85
l F2 24 0.46 2.13 �4.44
l PRE 23 0.68 2.29 �2.82
l F3OP 23 0.69 2.40 �2.74
r SMA 23 0.72 2.39 �2.76
r F3T 22 0.61 2.37 �2.79
l F1 22 0.49 2.09 �2.96
l POST 22 0.69 2.25 �2.83
r POST 22 0.61 2.24 �2.97
r F3OP 21 0.78 2.38 �2.72
r SMG 21 0.66 2.32 �2.77
l IN 20 0.64 2.54 �2.62
l V1 20 0.46 2.24 �2.86
l RO 19 0.77 2.59 �2.55
r PRE 19 0.73 2.30 �2.70
r F1M 19 0.39 2.29 �3.00
l O2 19 0.51 2.37 �2.78
l F3O 18 0.53 2.43 �2.63
l T2 18 0.56 2.32 �2.74
l F1M 17 0.38 2.34 �2.80
l LING 17 0.47 2.24 �3.40
r RO 15 0.72 2.64 �3.94
l PCL 15 0.81 2.49 �2.52
l Q 14 0.67 2.31 �2.59
r Q 14 0.69 2.52 �2.44
l O3 14 0.66 2.41 �2.52
r T2 14 0.44 2.37 �2.87
r LING 13 0.74 2.49 �2.42
l P2 13 0.51 2.43 �2.50
r IN 12 0.62 2.85 �2.29
l PCIN 12 0.56 2.43 �2.51
r V1 12 0.82 2.54 �2.38
r O3 12 0.73 2.64 �2.31
l P1 11 0.56 2.44 �2.47
r P2 11 0.64 2.52 �2.41
r CVCU 10 0.44 2.37 �4.03
l O1 10 0.53 2.91 �3.51
r FUSI 10 0.38 2.83 �3.76
r PCL 10 1.00 2.74 �2.25
l F3T 9 0.86 2.68 �2.28
l AG 9 0.64 2.57 �2.32
r AG 9 0.69 2.61 �2.31
l T1P 9 0.42 2.89 �2.42
l ACIN 8 0.46 2.85 �2.21
r ACIN 7 0.52 2.89 �2.15
r O2 7 0.86 2.84 �2.08
l HES 7 0.95 2.97 �2.09
r CHS 6 0.27 3.46 �2.16
r F1MO 6 0.67 3.10 �1.95
l FUSI 6 0.67 2.89 �2.03
r P1 6 0.67 2.84 �2.06
r T1P 6 0.40 3.25 �1.94
l CHCU 6 0.40 3.05 �3.21
l CHS 6 0.27 2.93 �2.64
r CVD 5 0.40 3.07 �3.15
r F3O 5 0.50 3.00 �2.01
r GR 5 0.30 3.13 �2.21
l F1MO 4 0.50 3.20 �1.85
r CAU 4 0.33 1.33 �0.50
r T2P 4 0.33 3.25 �1.84
r CHCU 4 0.33 3.13 �3.06
r F2O 3 0.67 3.94 �1.45
r PCIN 3 1.00 2.87 �1.98
l HIP 3 0.67 1.25 �0.20

(continued)

Table 4. Continued

Side
Parcel

abbreviation Degree Clustering Path length
Information

centrality

l PHIP 3 0.33 1.25 �0.28
r PHIP 3 0.67 1.25 �0.20
l F1O 3 0.67 3.94 �1.45
r F1O 3 0.33 4.05 �1.51
l PUT 3 0.33 1.67 �0.36
l THA 3 0.33 1.67 �0.36
l F2O 3 0.33 3.05 �2.44
l CHSS 3 0.00 3.83 �2.58
r CHSS 3 0.00 4.36 �3.17
l GR 2 0.00 4.09 �1.40
r HIP 2 1.00 1.75 �0.16
r O1 2 1.00 3.75 �1.53
l CAU 2 1.00 1.83 �0.22
r PUT 2 1.00 1.83 �0.22
l T2P 2 1.00 3.79 �1.54
r CHIS 2 0.00 5.32 �1.94
l CHG 1 �1.00 1.00 �0.06
r CHG 1 �1.00 6.31 �0.89
l CHB 1 �1.00 1.00 �0.06
r CVT 1 �1.00 4.06 �1.34
l AMYG 1 �1.00 2.00 �0.13
l PAL 1 �1.00 2.50 �0.17
r THA 1 �1.00 2.50 �0.17
r HES 1 �1.00 3.63 �1.57
l T3 1 �1.00 3.90 �1.44
r T3 1 �1.00 3.82 �1.46
l CHIS 1 �1.00 4.82 �1.14
l CHCL 1 �1.00 4.03 �1.36
r CHCL 1 �1.00 4.11 �1.32
r CHB 0 �1.00 �1.00 0.00
l CHT 0 �1.00 �1.00 0.00
r CHT 0 �1.00 �1.00 0.00
l CHF 0 �1.00 �1.00 0.00
r CHF 0 �1.00 �1.00 0.00
l CVL 0 �1.00 �1.00 0.00
l CVCL 0 �1.00 �1.00 0.00
r CVP 0 �1.00 �1.00 0.00
l CVU 0 �1.00 �1.00 0.00
l CVN 0 �1.00 �1.00 0.00
l OC 0 �1.00 �1.00 0.00
r OC 0 �1.00 �1.00 0.00
r AMYG 0 �1.00 �1.00 0.00
r PAL 0 �1.00 �1.00 0.00

Network measures are shown for all parcels in order of descending degree. Note
that for the last parcels where the degree is the lowest the parcel can be outside
of the main giant component of the network making clustering and path length
values inaccurate. Parcel abbreviations are the same as in Figure 7. Regions are
ranked in order of decreasing degree.
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identified in healthy controls. Functional brain networks were
simultaneously locally clustered, but highly efficient with effective
short cuts that formed a quintessential small world.9,11 We also
expanded on the technical aspects of network analysis to include
measures specifically relevant to neurosurgery, such as information
centrality.33 Finally, we demonstrated the relevance of network
analysis to neurosurgery, including brain mapping of specific net-
work features, understanding the effects of lesions, and visualizing
the data in an intuitive yet principled manner.39

Mapping hubs (and indeed other graph theory-related meas-
ures such as efficiency and path length) creates a new vocabulary
to use for functional brain mapping. This can be used for pre-sur-
gical planning to preserve nodes that are critically important to
the network composition while tolerating the removal of other
nodes that may have less effect on the network. Furthermore, the
potential long-range connectivity that is at risk from resection of
the tumour can be isolated, characterized, and preserved. This
method could be expanded to model virtual lesions on control
networks and comparing them with empirical networks to identify
putative plasticity. The ability to model real lesions and potential
plasticity are key requirements for any future ‘virtual brain’.

Current brain-mapping techniques (e.g. cortical stimulation
and task-based functional MRI) are immensely useful, particularly

at mapping local function or individual networks,40–44 but are
usually constrained to identifying a focus of maximal activation
for a specific function that is in turn deemed most relevant to the
proposed surgical outcome. Theories of functional neuro-anatomy
that have been applied to these methods have been those of local-
ization or regional specialization (e.g. primary cortex function)
and brain circuit connectivity (e.g. the Wernicke–Geschwind lan-
guage circuit). Connectome analysis naturally balances these theo-
ries of functional localization and network connectivity in a small
world framework (and other related concepts)45 and can, there-
fore, be viewed as complimentary to these established models.

One of the key requirements for the connectome to gain
acceptance in the neurosurgical domain is to confirm the relation-
ship of graph theory measures to neuro-cognitive outcome.46

Connectome analysis is a relatively recent field; therefore, most of
the data on neuro-cognitive outcomes is in healthy controls. The
efficiency of a network is related to general intelligence quo-
tient,47,48 while the extent of small world features is negatively
correlated with the performance of a task and higher education,47

suggesting that the degree of small worldness functions as a rheo-
stat depending on the perceived complexity of the task.
Preliminary work on patients with low-grade glioma have found a
small worldness and efficiency are related to cognitive deficits and

Figure 4. Degree distribution. (A) The histogram for the group network node degrees. The majority of nodes are of low degree (<5) while the maximum degree extends
above 30 (although few nodes have this degree). (B) The group network degree distribution is compared to that from simulated networks with either an exponential,
power law, or exponentially truncated power law degree distribution. The best fit determined using Akaite Information Criteria was with the exponentially truncated
power law degree distribution.
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Figure 5. Random error and targeted attack. The change in the size of the network giant component (top row) or efficiency (bottom row) due to either random error
(left column) or targeted attack based on degree centrality (right column). Changes are relative to the values for the intact network. All networks are approximately
equally affected by random error. However, targeted attack reveals vulnerability of the scale free network, while the brain network is of intermediate vulnerability
between the scale-free and random networks. Horizontal axis values are the proportion of nodes removed and vertical axis values are scaled to maximum. Solid line-
¼ brain networks, dotted line¼ simulated scale-free networks, dashed line¼ simulated random networks

Figure 6. Brain mapping with graph theory network measures. Axial view of node features displayed in cortical surface reconstructions. (A) Node size is proportional to
clustering co-efficient. (B) Node size is proportional to information centrality. In both figures, those nodes that are spatially adjacent to the tumour are highlighted.
Network edges are removed to focus on the node features. If one were to use this information for pre-surgical planning, purposefully sacrificing selected smaller nodes
to allow an extended surgical resection could be seen as having a minimal effect on overall network efficiency (and, therefore, by extrapolation on higher cognitive fea-
tures such as intelligence). However, inadvertently affecting too many of larger nodes would be expected to have a disproportionate effect on overall network efficiency,
and, therefore, should be avoided.
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Figure 7. Connections at risk. Circular representations of brain functional connectivity data (individual patient data, wavelet scale 2). Images are in neurological projection
(image left¼ left hemisphere) with superior aspect of the image representing anterior brain (akin to an axial view). The sides are symmetrical representations of individual
lobes (and parcels within) in their anterior–posterior co-ordinates. Inner circular heatmaps represent degree, clustering, and information centrality (outside to inside) per
parcel. Lines representing intra-lobe connections are outside with inter-lobe connections in the centre. On the right, the nodes closest to the tumour are highlighted in
red, while on the left the homologous nodes from the contralateral hemisphere are shown for comparison. The tumour was associated with reduced connectivity at intra-
lobar, intra-hemispheric and inter-hemispheric levels. These effects were clear and consistent at the individual participant level. If one were to use this for tumour plan-
ning, then the connections in red would represent those that could be affected by extending the resection outside of the contrast enhancing margin, and would then
become ‘connections at risk’. Parcel codes (alphabetical): ACIN: anterior cingulate; AG: angular gyrus; AMYG: amygdala; CAU: caudate; CHB: biventricular; CHCL: central lob-
ule; CHCU: culmen; CHF: floculus; CHG: gracilis; CHIS: inferior semilunar; CVL: lingual; CHS: simplex; CHSS: superior semilunar; CHT: tonsil; CV: vermis; F1M: superior medial
frontal; F1MO: superior frontal medial orbital; F2: middle frontal; F20: middle orbital; F30: inferior frontal pars orbitalis; F3OP: inferior frontal pars opercularis; F3T: inferior
frontal pars triangularis; FUSI: fusiform; GR: gyrus recturs; HES: Heschl gyrus; HIP: hippocampus; IFG: inferior frontal gyrus; IN: insula; LING: lingual; MCIN: middle cingulate;
O1: inferior occipital; O2: middle occipital; O3: superior occipital; OC: olfactory cortex; P1: superior parietal lobule; P2: inferior parietal lobule; PAL: lentiform nucleus; PCIN:
posterior cingulate; PCL: paracentral lobule; PHIP: parahippocampal gyrus; POST: post-central; PRE: precentral; PQ: precuneus; PUT: putamen; Q: cuneus; RO: rolandic oper-
culum; SMA: supplementary motor area; SMG: supramarginal gyrus; T1: superior temporal; T1P: temporal pole; T2: middle temporal; T2P: middle temporal pole; T3: inferior
temporal; THA: thalamus; V1: calcarine.
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intelligence in participants with frontal lobe tumours.50,51 Overall
it appears that the basic measures of connectome analysis are
related to core neuro-cognitive measures in healthy controls and
potentially in patients with tumours too although the data is cur-
rently somewhat limited. A novel approach to improving the cog-
nitive relevance of connectome analysis would be to use a
parcellation based on resting-state state fMRI networks that have
been shown to correspond to task-based functional activations in
a hierarchical clustering model.52,53 Therefore, the resulting net-
work would be the interplay of different functional components,
allowing more intuitive inference of network links and their
pathophysiology.

While our cohort is of sufficient size to demonstrate the core
network features and provide a proof of principle with our

methods, these data could be improved upon by including a larger
cohort with a variety of lesion locations and pathologies.
Longitudinal imaging with neuro-cognitive outcome data will aid
not only in validating the consistency of network metrics but also
in identifying dynamic network changes that could be related to
either plasticity or decompensation depending on the direction of
cognitive effect.54,55 Practically this process should be reasonably
straightforward and achievable with minimal infrastructural
investment. Most modern MRI scanners can acquire resting-state
fMRI data, the sequences themselves last less than 10 min, neuro-
cognitive assessment is readily being viewed as standard practice
for many types of neurosurgery both at presentation and during
follow-up.56,57 Successfully integrating these research protocols
into routine clinical practice will be critical to establishing

Figure 7. Continued.
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connectome analysis in neurosurgery as well as in developing
high-quality datasets.

Another aspect that could be developed further is the technical
methodology behind connectome construction and analysis. For
constructing the first connectomes in participants with real
lesions, we wished to concentrate on the least complicated and
most established methods of network construction, such as binary
thresholded networks based on anatomical parcellations.10,58 This
was to allow our methods to be valid and understandable yet not
to distract from our key message, which was what a connectome
analysis could bring to neurosurgery. Now we have established the
key features and challenges of connectome analysis in a neurosur-
gical population, there is now a foundation with which to base
further development of our methods. Improvements could be by
applying more refined parcellation templates,59,60 exploring alter-
native measures of statistical dependency between nodes (such as
partial correlation or mutual information),61 preserving edge
weights, and obviating thresholding to create fully connected
graphs.62

Finally, the field of network dynamics, or how information
flows over the network, is a largely untapped avenue to
explore.63,64 Network approaches (known as cascading failures)
have been successfully applied to studying blackout propagation
in power networks65 and traffic jams.66,67 Similar approaches
could be applied in the brain to study seizure propagation and
model the effects of cortical stimulation. This latter approach
would view cortical stimulation as local overload leading to a
network ‘blackout’, which not only allows the creation of an
analytical model but also allows extrapolation of local effects to
a network level. To use an analogy with a power grid network,
cortical stimulation could be looked upon as overloading certain
links, which then results in information overload throughout the
network and subsequent functional shut down. Such a solution
may resolve the discrepancy in why function appears to be so
variable between individuals.68 Refinement of this model offers a
unique opportunity to pre-operatively predict the likely sites for
positive stimulation, thereby marrying old and new techniques of
brain mapping to result in improvements in patient care.

Conclusions

We present the principles underlying a connectome analysis of
functional brain data in patients with brain tumours and demon-
strate how analytically principled methods can be used to explore
the key features of these networks. With these initial results, we
hope to have demonstrated the potential of connectome analysis
to addressing important questions in functional neuroanatomy.
Understanding how the brain copes with and responds to lesions
from a network perspective may bring us one step closer to devel-
oping a working ‘virtual brain’ to plan surgery in a way that is
not only safer but also allows more extensive surgical resection.
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